

Graph Analytics to Analyze Connected Data

Reza Pahlevi Country Managing Director Neo4j Indonesia

© 2022 Neo4j, Inc. All rights reserved.

Neo4j is the Undisputed Leader in Graph Databases

Neo4j Leads the 2020 Forrester Wave™ for Graph Data Platforms

Forrester

DB-ENGINES

#1 Most Popular Graph Database with Developers

	\Box include secondary database models				36 systems in ranking, January 2022	
	Jan 2022	Rank Dec 2021	Jan 2021	DBMS	Database Model	Score Jan Dec Jan 2022 2021 2021
I	1.	1.	1.	Neo4j 🔁	Graph	58.03 0.00 +4.25
Ī	2.	2.	2.	Microsoft Azure Cosmos DB 🚼	Multi-model 👔	40.04 +0.33 +7.07
	3.	3.	个 7.	Virtuoso 🕂	Multi-model 👔	5.37 +0.31 +3.23
	4.	4.	4.	ArangoDB 🖶	Multi-model 👔	4.73 -0.02 -0.56
	5.	5.	🕹 З.	OrientDB	Multi-model 👔	4.56 +0.16 -0.77
	6.	6.	1 8.	GraphDB 🖶	Multi-model 👔	2.86 -0.02 +0.75
	7.	7.	4 6.	Amazon Neptune	Multi-model 👔	2.63 +0.07 +0.32
	8.	8.	4 5.	JanusGraph	Graph	2.39 -0.02 -0.19
	9.	9.	↑ 12.	TigerGraph 🚼	Graph	2.02 +0.02 +0.62
	10.	10.	† 11.	Stardog 🗄	Multi-model 👔	1.89 -0.04 +0.42

200k+ Developers

Members Globally

50k+

Members with LinkedIn Skills

Helping Leading Enterprises Solve Their Most Complex Data Needs

Customer Stories

Customers Solving the Previously Unsolvable

Real-World Workloads at Mission-Critical Scale

Lockheed Martin Product 360

Space division integrated disperse process and product data

- Combined data from various silos and created a 360 view of the entire lifecycle of products
- Significantly optimized dependencies and supply schedules

US Army / Calibre Systems Predictive Maintenance

Modernization of procurement, budget and logistics processes for equipment & spare parts

I S ARM

- Shed cost estimation times by 88%
- Improved parts delivery timing and accuracy
- DBA labor required dropped by 77%

Danish Business Authority Fraud Detection

Improving the efficiency in finding fraudulent business relationships

- Built a powerful, explainable AI tool to contextualize business life cycles and provide machine-generated insights
- Reduced VAT deficit by 1B Krone in the first year

Bridging Between the Past and the Future

"Using Neo4j, someone from our Orion project found information from the Apollo project that prevented an issue, **saving well over two years of work and one million dollars** of taxpayer funds."

> David Meza Chief Knowledge Architect NASA

Neo4j Aura for Risk Mitigation

Background

- Cutting-edge oil and gas provider based in Norway
- Leader in the industry for digital transformation initiatives

Business Problem

• Leverage data insights to reduce risk and automate subsea operations

Why Aura

• Deliver a cloud based graph database service with the required support, availability and security

US Army / Calibre Systems

Equipment Logistics

Background

- US IT consulting firm helped US Army streamline equipment deployments and maintenance spending
- Saving lives by improving the operational readiness of Army equipment like tanks, radios, transports, aircraft, weaponry, etc.

Business Problem

- Needed to modernize procurement, budget and logistics processes for equipment & spare parts
- Millions of connections among a tank's bill-of-materials, for example
- Improve "what if" cost calculations when planning missions and troop deployments
- Mainframe systems required over 60 man-hrs to calculate changes... planning took too long

Solution and Benefits

- Shed cost estimation times by 88%
- Improved parts delivery timing and accuracy
- DBA labor required dropped by 77%
- Equipment TCO more predictable
- Safer soldiers

CATERPILLAR

Caterpillar

Heavy Equipment Manufacturing

Background

- Fortune 100 heavy equipment manufacturer
- 27 Million warranty & service documents parsed

Business Problem

- Improve maintenance predictability
- Need a knowledge base for 27 million warranty documents and maintenance orders
- Graphs gather context for AI to identify 'prime examples' of connections among parts, suppliers, customers and their mechanics anticipate when equipment will need servicing and by whom

Solution and Benefits

- Knowledge graph created through Natural Language Processing (NLP) of decades of historical service documents
- Common ontology for complaints, symptoms & parts
- Anticipates when equipment will need servicing
- Improves customer and brand satisfaction
- Maximizes lifespan and value of equipment

Neo4j Graph Data Science

Graphs & Data Science

Graph Native Machine Learning

Graph Algorithms

Knowledge Graphs

Find the patterns you're looking for in connected data

Use unsupervised machine learning techniques to identify associations, anomalies, and trends.

Use embeddings to learn the features in your graph that you don't even know are important yet.

Train in-graph supervise ML models to predict links, labels, and missing data.

16

From Simple Queries to Advanced ML

Human-crafted guery, human-readable result

MATCH (p1:Person) - [:ENEMY] -> (:Person) <- [:ENEMY] - (p2:PERSON) MERGE (p1) - [:FRIEND] -> (p2)

Machine Learning Workflows

Train ML models based on results

(χ)

Predefined formula, human-readable result

PageRank (Emil) = 13.25PageRank (Amy) = 4.83 PageRank(Alicia) = 4.75

$$PR(u) = \sum_{v \in B_u} \overline{-L(v)}$$

17

AI-learned formula, machine-readable result

Node2Vec(Emil) = [5.4 5.1 2.4 4.5 3.1]Node2Vec (Amy) =[2.8 1.8 7.2 0.9 3.0] Node2Vec(Alicia) = [1.4 5.2 4.4 3.9 3.2]

Supervised ML in Neo4j

•

Sample of Neo4j Specific Solution

- Neo4j for Banking
- Neo4j for Social Media Analytics
- Neo4j for Human Capital Management

Neo4j for Banking

Banking Recommendation System

Neo4j for Social Media Analytics

Social Media Hoax Detection

Tax Potency Prediction System

Neo4j for Human Capital Management

Humkan Capital Management

<mark>,</mark>∩eo4j

Thank you!

Reza Pahlevi Country Managing Director – Indonesia reza.pahlevi@neo4j.com

